174k views
4 votes
The total number of pairs of integers (x,y) which satisfy the equation x^2-4xy+5y^2+2y-4=0 is?

User Umeli
by
8.2k points

1 Answer

1 vote
Interesting and not very easy question.
First, we have to complete the squares for x and y and rewrite this equation in "standard" form.


x^2-4xy+5y^2+2y-4=0\\\\x^2-4xy+4y^2+y^2+2y-4=0\\\\\big(x^2-2\cdot x\cdot2y+(2y)^2\big)+y^2+2y-4=0\\\\(x-2y)^2+y^2+2y+1-1-4=0\\\\(x-2y)^2+(y^2+2y+1)-5=0\\\\\boxed{(x-2y)^2+(y+1)^2=5}

x and y are integers and we know that if two numbers a and b are integers then (a+b), (a-b), a*b are integers too, so (x-2y) and (y+1) from our equation, are integers.

In equation, we add two squares and get 5 as result. This is possible only when we have:

1² + 2² = 1 + 4 = 5
or
2² + 1² = 4 + 1 = 5

If so, there will be:

1.


1+4=5\\\\ (x-2y)^2+(y+1)^2=5 \implies(x-2y)^2=1\quad\wedge\quad(y+1)^2=4\\\\\\ (y+1)^2=4\\\\(y+1)=2\quad\vee\quad (y+1)=-2\\\\y=2-1\quad\vee\quad y=-2-1\\\\\boxed{y=1\quad\vee\quad y=-3}\\\\

For y = 1


(x-2y)^2=1\\\\(x-2y)=1\quad\vee\quad(x-2y)=-1\\\\(x-2\cdot1)=1\quad\vee\quad(x-2\cdot1)=-1\\\\x-2=1\quad\vee\quad x-2=-1\\\\x=1+2\quad\vee\quad x=-1+2\\\\\boxed{x=3\quad\vee\quad x=1}

we have two pairs (3,1) and (1,1).

For y = -3


(x-2y)^2=1\\\\(x-2y)=1\quad\vee\quad(x-2y)=-1\\\\(x-2\cdot(-3))=1\quad\vee\quad(x-2\cdot(-3))=-1\\\\x+6=1\quad\vee\quad x+6=-1\\\\x=1-6\quad\vee\quad x=-1-6\\\\\boxed{x=-5\quad\vee\quad x=-7}

we have two pairs (-5,-3) and (-7,-3).

2.


4+1=5\\\\ (x-2y)^2+(y+1)^2=5 \implies(x-2y)^2=4\quad\wedge\quad(y+1)^2=1\\\\\\ (y+1)^2=1\\\\(y+1)=1\quad\vee\quad (y+1)=-1\\\\y=1-1\quad\vee\quad y=-1-1\\\\\boxed{y=0\quad\vee\quad y=-2}

For y = 0


(x-2y)^2=4\\\\(x-2y)=2\quad\vee\quad(x-2y)=-2\\\\(x-2\cdot0)=2\quad\vee\quad(x-2\cdot0)=-2\\\\\boxed{x=2\quad\vee\quad x=-2}

we have two pairs (2,0) and (-2,0)

For y = -2


(x-2y)^2=4\\\\(x-2y)=2\quad\vee\quad(x-2y)=-2\\\\(x-2\cdot(-2))=2\quad\vee\quad(x-2\cdot(-2))=-2\\\\x+4=2\quad\vee\quad x+4=-2\\\\x=2-4\quad\vee\quad x=-2-4\\\\\boxed{x=-2\quad\vee\quad x=-6}

we have two pairs (-2,-2) and (-6,-2).

So the total number of pairs of integers which satisfy the equation is 8.
User Corlis
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.