499,693 views
34 votes
34 votes
Solve and graph the equality 2|x-4|+3<15 on a number line

Solve and graph the equality 2|x-4|+3<15 on a number line-example-1
User Roger Creasy
by
3.2k points

1 Answer

23 votes
23 votes

Given inequality:


2|\text x- 4\leq\text{ 15}

Subtract 3 from both sides:


\begin{gathered} 2\text + 3 -3 \leq\text{ 15- 3} \\ 2|x\text -4\leq\text{ 12} \end{gathered}

Divide both sides by 2:


\begin{gathered} (2|x-4|)/(2)\text{ }\leq(12)/(2) \\ |x\text \leq\text{ 6} \end{gathered}

Simplifying:

Apply absolute rule:


\text{if }|u|\text{ }\leq\text{ a, }a\text{ }>\text{ 0 }then\text{ -a }\leq\text{ u }\leq\text{ a}

Hence:


-6\text{ }\leq\text{ x-4 }\leq\text{ 6}
\begin{gathered} x\text{ -4 }\ge\text{ -6} \\ x\text{ }\ge\text{ -6 + 4} \\ x\ge\text{ -2 } \\ \\ \text{and } \\ \\ x\text{ -4 }\leq\text{ 6} \\ x\text{ }\leq\text{ 6 + 4} \\ x\text{ }\leq\text{ 10} \end{gathered}

Merge overlapping intervals, we have the solution to be:


-2\leq\text{ x }\leq\text{ 10}

The graph of the solution to the inequality is shown below:

Solve and graph the equality 2|x-4|+3<15 on a number line-example-1