113k views
1 vote
3y''-6y'+6y=e*x sexcx

User MaRuf
by
7.9k points

1 Answer

1 vote
From the homogeneous part of the ODE, we can get two fundamental solutions. The characteristic equation is


3r^2-6r+6=0\iff r^2-2r+2=0

which has roots at
r=1\pm i. This admits the two fundamental solutions


y_1=e^x\cos x

y_2=e^x\sin x

The particular solution is easiest to obtain via variation of parameters. We're looking for a solution of the form


y_p=u_1y_1+u_2y_2

where


u_1=-\displaystyle\frac13\int(y_2e^x\sec x)/(W(y_1,y_2))\,\mathrm dx

u_2=\displaystyle\frac13\int(y_1e^x\sec x)/(W(y_1,y_2))\,\mathrm dx

and
W(y_1,y_2) is the Wronskian of the fundamental solutions. We have


W(e^x\cos x,e^x\sin x)=\begin{vmatrix}e^x\cos x&e^x\sin x\\e^x(\cos x-\sin x)&e^x(\cos x+\sin x)\end{vmatrix}=e^(2x)

and so


u_1=-\displaystyle\frac13\int(e^(2x)\sin x\sec x)/(e^(2x))\,\mathrm dx=-\int\tan x\,\mathrm dx

u_1=\frac13\ln|\cos x|


u_2=\displaystyle\frac13\int(e^(2x)\cos x\sec x)/(e^(2x))\,\mathrm dx=\int\mathrm dx

u_2=\frac13x

Therefore the particular solution is


y_p=\frac13e^x\cos x\ln|\cos x|+\frac13xe^x\sin x

so that the general solution to the ODE is


y=C_1e^x\cos x+C_2e^x\sin x+\frac13e^x\cos x\ln|\cos x|+\frac13xe^x\sin x
User Mark Wang
by
7.8k points