142k views
0 votes
Precalc.

Solve the equation for x, accurate to three decimal places: (log2x)^2 + 7log2x + 12 = 0

Precalc. Solve the equation for x, accurate to three decimal places: (log2x)^2 + 7log-example-1

1 Answer

4 votes
Domain: x>0.


(\log_2x)^2+7\log_2x+12=0

Substitute
t=\log_2x\in\mathbb{R}. We have:


t^2+7t+12=0\\\\a=1\qquad b=7\qquad c=12\\\\\\\Delta=b^2-4ac=7^2-4\cdot1\cdot12=49-48=1\\\\√(\Delta)=√(1)=1\\\\\\ t_1=(-b-√(\Delta))/(2a)=(-7-1)/(2)=(-8)/(2)=-4\\\\\\ t_2=(-b+√(\Delta))/(2a)=(-7+1)/(2)=(-6)/(2)=-3

For t₁ there will be:


\log_2x=t_1\\\\\log_2x=-4\\\\2^(-4)=x\\\\x=(1)/(2^4)\\\\\\x=(1)/(16)=0,0625\\\\\\\boxed{x\approx0,063}

and for t₂:


\log_2x=t_2\\\\\log_2x=-3\\\\2^(-3)=x\\\\x=(1)/(2^3)\\\\\\x=(1)/(8)\\\\\\\boxed{x=0,125}

Answer d)


User Jscul
by
8.2k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories