142k views
0 votes
Precalc.

Solve the equation for x, accurate to three decimal places: (log2x)^2 + 7log2x + 12 = 0

Precalc. Solve the equation for x, accurate to three decimal places: (log2x)^2 + 7log-example-1

1 Answer

4 votes
Domain: x>0.


(\log_2x)^2+7\log_2x+12=0

Substitute
t=\log_2x\in\mathbb{R}. We have:


t^2+7t+12=0\\\\a=1\qquad b=7\qquad c=12\\\\\\\Delta=b^2-4ac=7^2-4\cdot1\cdot12=49-48=1\\\\√(\Delta)=√(1)=1\\\\\\ t_1=(-b-√(\Delta))/(2a)=(-7-1)/(2)=(-8)/(2)=-4\\\\\\ t_2=(-b+√(\Delta))/(2a)=(-7+1)/(2)=(-6)/(2)=-3

For t₁ there will be:


\log_2x=t_1\\\\\log_2x=-4\\\\2^(-4)=x\\\\x=(1)/(2^4)\\\\\\x=(1)/(16)=0,0625\\\\\\\boxed{x\approx0,063}

and for t₂:


\log_2x=t_2\\\\\log_2x=-3\\\\2^(-3)=x\\\\x=(1)/(2^3)\\\\\\x=(1)/(8)\\\\\\\boxed{x=0,125}

Answer d)


User Jscul
by
8.3k points

Related questions