159k views
1 vote
Find the accumulated value of an investment of $1500 for 5 years at an interest rate of 7% if the money is a.compounded semiannually b.compounded quarterly c. Compounded monthly d.compounded continuously

User TomSlick
by
8.1k points

1 Answer

5 votes
a)


\bf \qquad \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+(r)/(n)\right)^(nt) \quad \begin{cases} A=\textit{compounded amount}\\ P=\textit{original amount deposited}\to &\$1500\\ r=rate\to7\%\to (7)/(100)\to &0.07\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{semi-annually, thus twice} \end{array}\to &2\\ t=years\to &5 \end{cases} \\\\\\ A=1500\left(1+(0.07)/(2)\right)^(2\cdot 5)

b)


\bf \qquad \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+(r)/(n)\right)^(nt) \quad \begin{cases} A=\textit{compounded amount}\\ P=\textit{original amount deposited}\to &\$1500\\ r=rate\to7\%\to (7)/(100)\to &0.07\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{quarterly, 4 quarters, thus} \end{array}\to &4\\ t=years\to &5 \end{cases} \\\\\\ A=1500\left(1+(0.07)/(4)\right)^(4\cdot 5)

c)


\bf \qquad \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+(r)/(n)\right)^(nt) \quad \begin{cases} A=\textit{compounded amount}\\ P=\textit{original amount deposited}\to &\$1500\\ r=rate\to7\%\to (7)/(100)\to &0.07\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{monthly, 12 months, thus} \end{array}\to &12\\ t=years\to &5 \end{cases} \\\\\\ A=1500\left(1+(0.07)/(12)\right)^(12\cdot 5)

d)


\bf \qquad \textit{Compound Interest Earned Amount} \\\\ A=Pe^(rt) \quad \begin{cases} A=\textit{compounded amount}\\ P=\textit{original amount deposited}\to &\$1500\\ r=rate\to7\%\to (7)/(100)\to &0.07\\ t=years\to &5 \end{cases} \\\\\\ A=1500e^(0.07\cdot 5)
User Astrogator
by
7.7k points