122k views
2 votes
Prove that


\mathsf=\sum_(k=1)^n k.

for all natural n.

=====

Take this seriously. Jokes and spam will be reported right away.

User Faryal
by
7.9k points

1 Answer

4 votes
Let's start from what we know.


(1)\qquad\sum\limits_(k=1)^n1=\underbrace{1+1+\ldots+1}_(n)=n\cdot 1=n\\\\\\ (2)\qquad\sum\limits_(k=1)^nk=1+2+3+\ldots+n=(n(n+1))/(2)\quad\text{(arithmetic series)}\\\\\\ (3)\qquad\sum\limits_(k=1)^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_(k=1)^nk\right|=\sum\limits_(k=1)^nk

Note that:


\sum\limits_(k=1)^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first
S_n^+ with only positive trems (squares of even numbers) and second
S_n^- with negative (squares of odd numbers). So:


\sum\limits_(k=1)^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both
S_n^+ and
S_n^- have
(n)/(2) terms. For example if n=8 then:


S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{(8)/(2)=4}\qquad\text{(even numbers)}\\\\\\ S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{(8)/(2)=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:


S_n^+=\sum\limits_(k=1)^(n)/(2)(2k)^2\\\\\\S_n^-=\sum\limits_(k=1)^(n)/(2)(2k-1)^2\\\\\\

Now, calculate our sum:


\left|\sum\limits_(k=1)^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|= \left|\sum\limits_(k=1)^(n)/(2)(2k)^2-\sum\limits_(k=1)^(n)/(2)(2k-1)^2\right|=\\\\\\= \left|\sum\limits_(k=1)^(n)/(2)4k^2-\sum\limits_(k=1)^(n)/(2)\left(4k^2-4k+1\right)\right|=\\\\\\


=\left|4\sum\limits_(k=1)^(n)/(2)k^2-4\sum\limits_(k=1)^(n)/(2)k^2+4\sum\limits_(k=1)^(n)/(2)k-\sum\limits_(k=1)^(n)/(2)1\right|=\left|4\sum\limits_(k=1)^(n)/(2)k-\sum\limits_(k=1)^(n)/(2)1\right|\stackrel{(1),(2)}{=}\\\\\\= \left|4((n)/(2)((n)/(2)+1))/(2)-(n)/(2)\right|=\left|2\cdot(n)/(2)\left((n)/(2)+1\right)-(n)/(2)\right|=\left|n\left((n)/(2)+1\right)-(n)/(2)\right|=\\\\\\


=\left|(n^2)/(2)+n-(n)/(2)\right|=\left|(n^2)/(2)+(n)/(2)\right|=\left|(n^2+n)/(2)\right|=\left|(n(n+1))/(2)\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=} \left|\sum\limits_(k=1)^nk\right|\stackrel{(3)}{=}\sum\limits_(k=1)^nk

So in this case we prove, that:


\left|\sum\limits_(k=1)^n(-1)^k\cdot k^2\right|=\sum\limits_(k=1)^nk

2) n is odd.

Here,
S_n^- has more terms than
S_n^+. For example if n=7 then:


S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{(n+1)/(2)=(7+1)/(2)=4}\\\\\\ S_7^+=\underbrace{2^2+4^4+6^2}_{(n+1)/(2)-1=(7+1)/(2)-1=3}\\\\\\

So there is
(n+1)/(2) terms in
S_n^-,
(n+1)/(2)-1 terms in
S_n^+ and:


S_n^+=\sum\limits_(k=1)^{(n+1)/(2)-1}(2k)^2\\\\\\ S_n^-=\sum\limits_(k=1)^{(n+1)/(2)}(2k-1)^2

Now, we can calculate our sum:


\left|\sum\limits_(k=1)^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|= \left|\sum\limits_(k=1)^{(n+1)/(2)-1}(2k)^2-\sum\limits_(k=1)^{(n+1)/(2)}(2k-1)^2\right|=\\\\\\= \left|\sum\limits_(k=1)^{(n+1)/(2)-1}4k^2-\sum\limits_(k=1)^{(n+1)/(2)}\left(4k^2-4k+1\right)\right|=\\\\\\= \left|\sum\limits_(k=1)^{(n-1)/(2)-1}4k^2-\sum\limits_(k=1)^{(n+1)/(2)}4k^2+\sum\limits_(k=1)^{(n+1)/(2)}4k-\sum\limits_(k=1)^{(n+1)/(2)}1\right|=\\\\\\


=\left|\sum\limits_(k=1)^{(n-1)/(2)-1}4k^2-\sum\limits_(k=1)^{(n+1)/(2)-1}4k^2-4\left((n+1)/(2)\right)^2+\sum\limits_(k=1)^{(n+1)/(2)}4k-\sum\limits_(k=1)^{(n+1)/(2)}1\right|=\\\\\\= \left|-4\left((n+1)/(2)\right)^2+4\sum\limits_(k=1)^{(n+1)/(2)}k-\sum\limits_(k=1)^{(n+1)/(2)}1\right|\stackrel{(1),(2)}{=}\\\\\\ \stackrel{(1),(2)}{=}\left|-4(n^2+2n+1)/(4)+4((n+1)/(2)\left((n+1)/(2)+1\right))/(2)-(n+1)/(2)\right|=\\\\\\


=\left|-n^2-2n-1+2\cdot(n+1)/(2)\left((n+1)/(2)+1\right)-(n+1)/(2)\right|=\\\\\\= \left|-n^2-2n-1+(n+1)\left((n+1)/(2)+1\right)-(n+1)/(2)\right|=\\\\\\= \left|-n^2-2n-1+((n+1)^2)/(2)+n+1-(n+1)/(2)\right|=\\\\\\= \left|-n^2-n+(n^2+2n+1)/(2)-(n+1)/(2)\right|=\\\\\\= \left|-n^2-n+(n^2)/(2)+n+(1)/(2)-(n)/(2)-(1)/(2)\right|=\left|-(n^2)/(2)-(n)/(2)\right|=\left|-(n^2+n)/(2)\right|=\\\\\\


=\left|-(n(n+1))/(2)\right|=|-1|\cdot\left|(n(n+1))/(2)\right|=\left|(n(n+1))/(2)\right|\stackrel{(2)}{=}\left|\sum\limits_(k=1)^nk\right|\stackrel{(3)}{=}\sum\limits_(k=1)^nk

We consider all possible n so we prove that:


\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_(k=1)^n(-1)^k\cdot k^2\right|=\sum\limits_(k=1)^nk
User Gustavo Matias
by
8.2k points