Answer:

General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2018/formulas/mathematics/high-school/s293bflxm18bvcg1l3en3cuunq0lisacx0.png)
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2018/formulas/mathematics/high-school/44u8gzhn9ta01w8xtfd21jo1ablmtfakai.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Derivative Property [Addition/Subtraction]:
![\displaystyle y' = (d)/(dx)[3x^3] + (d)/(dx)[2]](https://img.qammunity.org/2018/formulas/mathematics/high-school/jvcc57spesgvfqsxhlfgesdw7b0bfyukf5.png)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle y' = 3 (d)/(dx)[x^3] + (d)/(dx)[2]](https://img.qammunity.org/2018/formulas/mathematics/high-school/b9d9b0jsx1f52vh5c1w9sv33g8c2553uz9.png)
- Basic Power Rule:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation