89.3k views
0 votes
Find the derivative of y with respect to t y=t(ln7t)^2

1 Answer

4 votes

\bf y=t\left[ ln(7t) \right]^2\impliedby \textit{product rule}\\\\ -----------------------------\\\\ \cfrac{dy}{dt}=1\cdot \left[ ln(7t) \right]^2+t\cdot 2\left[ ln(7t) \right]\cdot \left( \cfrac{7}{7t} \right)\cdot 7\impliedby chain-rule \\\\\\ \cfrac{dy}{dt}=\left[ ln(7t) \right]^2+ln(7t)\cdot 2t\cdot \cfrac{1}{t}\cdot 7\implies \cfrac{dy}{dt}=\left[ ln(7t) \right]^2+14ln(7t)
User Sacho
by
6.3k points