6.3k views
4 votes
Calculus help ASAP!!!

Show that the function
F(x) = \int\limits^(5x)_(2x) {(1)/(t)} \, dt is constant over the interval (0, +∞)

User Azochz
by
8.5k points

1 Answer

2 votes
Let
c\in(0,\infty). Then the definite integral can be split up at
t=c so that


\displaystyle F(x)=\int_(t=2x)^(t=5x)\frac{\mathrm dt}t

\displaystyle=\int_(t=2x)^(t=c)\frac{\mathrm dt}t+\int_(t=c)^(t=5x)\frac{\mathrm dt}t

\displaystyle=-\int_(t=c)^(t=2x)\frac{\mathrm dt}t+\int_(t=c)^(t=5x)\frac{\mathrm dt}t

Now take the derivative. By the fundamental theorem of calculus, you have


\displaystyle(\mathrm dF)/(\mathrm dx)=(\mathrm d)/(\mathrm dx)\left[\int_(t=c)^(t=5x)\frac{\mathrm dt}t-\int_(t=c)^(t=2x)\frac{\mathrm dt}t\right]

=\displaystyle\frac1{5x}(\mathrm d)/(\mathrm dx)[5x]-\frac1{2x}(\mathrm d)/(\mathrm dx)[2x]

=\frac5{5x}-\frac2{2x}

=\frac1x-\frac1x

=0

Then integrating with respect to
x, we recover
F(x) and find that


\displaystyle\int(\mathrm dF)/(\mathrm dx)\,\mathrm dx=\int0\,\mathrm dx

F(x)=C

where
C is an arbitrary constant.
User Rohit Karadkar
by
8.4k points