175k views
3 votes
3(2^x) = 6^2x
How do you solve this?

1 Answer

5 votes

3(2^x)=6^(2x)

3(2^x)=(3*2)^(2x)

3(2^x)=3^(2x)2^(2x)

\ln(3(2^x))=\ln(3^(2x)2^(2x))

\ln3+\ln2^x=\ln3^(2x)+\ln2^(2x)

\ln3+x\ln2=2x\ln3+2x\ln2

\ln3=2x\ln3+2x\ln2-x\ln2

\ln3=x(2\ln3+\ln2)

x=(\ln3)/(2\ln3+\ln2)
User Madis Pukkonen
by
8.7k points

No related questions found