163k views
1 vote
Find a formula for the least squares solution of ax=b when the columns of a are orthonormal1 .

1 Answer

6 votes
Let
\mathbf A be a rectangular
m* n matrix with column vectors
\mathbf a_1,\ldots,\mathbf a_n, i.e.


\mathbf A=\begin{bmatrix}\mathbf a_1&\cdots&\mathbf a_n\end{bmatrix}

Then we have


\mathbf A^\top=\begin{bmatrix}\mathbf a_1&\cdots&\mathbf a_n\end{bmatrix}^\top

and the product of the two is


\mathbf A^\top\mathbf A=\begin{bmatrix}\mathbf a_1\cdot\mathbf a_1&\mathbf a_1\cdot\mathbf a_2&\cdots&\mathbf a_1\cdot\mathbf a_n\\\mathbf a_2\cdot\mathbf a_1&\mathbf a_2\cdot\mathbf a_2&\cdots&\mathbf a_2\cdot\mathbf a_n\\\vdots&\vdots&\ddots&\vdots\\\mathbf a_n\cdot\mathbf a_1&\mathbf a_n\cdot\mathbf a_2&\cdots&\mathbf a_n\cdot\mathbf a_n\end{bmatrix}

Because the columns of
\mathbf A are orthonormal, we have


\mathbf a_i\cdot\mathbf a_j=\begin{cases}1&\text{for }i=j\\0&\text{for }i\\eq j\end{cases}

which means
\mathbf A^\top\mathbf A reduces to an
n* n matrix with ones along the diagonal and zero everywhere else, i.e.


\mathbf A^\top\mathbf A=\begin{bmatrix}1&0&\cdots&0\\0&1&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&1\end{bmatrix}=\mathbf I_n

where
\mathbf I denotes the identity matrix. This means the solution to
\mathbf{Ax}=\mathbf b is given by


\mathbf A^\top(\mathbf{Ax})=\mathbf A^\top\mathbf b\implies(\underbrace{\mathbf A^\top\mathbf A}_(\mathbf I))\mathbf x=\mathbf A^\top\mathbf b\implies\mathbf x=\mathbf A^\top\mathbf b
User Matthieu H
by
6.2k points