200k views
1 vote
The vectors a b and c are such that a+b+c=0. Determine the value of a•b+a•c+b•c if |a|=1, |b|=2 and |c|=3.. here's my solution

1 Answer

5 votes
Given:


\begin{cases}\mathbf a+\mathbf b+\mathbf c=\mathbf0&(1)\\\|\mathbf a\|=1&(2)\\\|\mathbf b\|=2&(3)\\\|\mathbf c\|=3&(4)\end{cases}

Take the dot product of both sides of (1) with
\mathbf a. You end up with


\mathbf a\cdot(\mathbf a+\mathbf b+\mathbf c)=\mathbf a\cdot\mathbf0

\mathbf a\cdot\mathbf a+\mathbf a\cdot\mathbf b+\mathbf a\cdot\mathbf c=0

\|\mathbf a\|^2+\mathbf a\cdot\mathbf b+\mathbf a\cdot\mathbf c=0

\mathbf a\cdot\mathbf b+\mathbf a\cdot\mathbf c=-1

Doing the same thing with
\mathbf b and
\mathbf c, you end up with the system


\begin{cases}\mathbf a\cdot\mathbf b+\mathbf a\cdot\mathbf c=-1\\\mathbf a\cdot\mathbf b+\mathbf b\cdot\mathbf c=-4\\\mathbf a\cdot\mathbf c+\mathbf b\cdot\mathbf c=-9\end{cases}\implies \begin{cases}\mathbf a\cdot\mathbf b=2\\\mathbf a\cdot\mathbf c=-3\\\mathbf b\cdot\mathbf c=-6\end{cases}

and so


\mathbf a\cdot\mathbf b+\mathbf a\cdot\mathbf c+\mathbf b\cdot\mathbf c=2-3-6=-7
User Igonejack
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories