200k views
1 vote
The vectors a b and c are such that a+b+c=0. Determine the value of a•b+a•c+b•c if |a|=1, |b|=2 and |c|=3.. here's my solution

1 Answer

5 votes
Given:


\begin{cases}\mathbf a+\mathbf b+\mathbf c=\mathbf0&(1)\\\|\mathbf a\|=1&(2)\\\|\mathbf b\|=2&(3)\\\|\mathbf c\|=3&(4)\end{cases}

Take the dot product of both sides of (1) with
\mathbf a. You end up with


\mathbf a\cdot(\mathbf a+\mathbf b+\mathbf c)=\mathbf a\cdot\mathbf0

\mathbf a\cdot\mathbf a+\mathbf a\cdot\mathbf b+\mathbf a\cdot\mathbf c=0

\|\mathbf a\|^2+\mathbf a\cdot\mathbf b+\mathbf a\cdot\mathbf c=0

\mathbf a\cdot\mathbf b+\mathbf a\cdot\mathbf c=-1

Doing the same thing with
\mathbf b and
\mathbf c, you end up with the system


\begin{cases}\mathbf a\cdot\mathbf b+\mathbf a\cdot\mathbf c=-1\\\mathbf a\cdot\mathbf b+\mathbf b\cdot\mathbf c=-4\\\mathbf a\cdot\mathbf c+\mathbf b\cdot\mathbf c=-9\end{cases}\implies \begin{cases}\mathbf a\cdot\mathbf b=2\\\mathbf a\cdot\mathbf c=-3\\\mathbf b\cdot\mathbf c=-6\end{cases}

and so


\mathbf a\cdot\mathbf b+\mathbf a\cdot\mathbf c+\mathbf b\cdot\mathbf c=2-3-6=-7
User Igonejack
by
8.2k points