204k views
2 votes

(dy)/(dt) + 0.5yt=8t and
y(0)=9

Find y(t)

User Overthetop
by
8.0k points

1 Answer

6 votes

(\mathrm dy)/(\mathrm dt)+\frac t2y=8t

e^(t^2/2)(\mathrm dy)/(\mathrm dt)+\frac t2e^(t^2/2)y=8te^(t^2/2)

(\mathrm d)/(\mathrm dt)\left[e^(t^2/2)y\right]=8te^(t^2/2)

e^(t^2/2)y=8\displaystyle\int te^(t^2/2)\,\mathrm dt

e^(t^2/2)y=8e^(t^2/2)+C

y=8+Ce^(-t^2/2)

With
y(0)=9, we get


9=8+Ce^0\implies C=1

and so the particular solution must be


y=8+e^(-t^2/2)
User Shreya Batra
by
8.9k points