![\bf cos\left[tan^(-1)\left((12)/(5) \right)+ tan^(-1)\left((-8)/(15) \right) \right]\\ \left. \qquad \qquad \quad \right.\uparrow \qquad \qquad \qquad \uparrow \\ \left. \qquad \qquad \quad \right.\alpha \qquad \qquad \qquad \beta \\\\\\ \textit{that simply means }tan(\alpha)=\cfrac{12}{5}\qquad and\qquad tan(\beta)=\cfrac{-8}{5} \\\\\\ \textit{so, we're really looking for }cos(\alpha+\beta)](https://img.qammunity.org/2018/formulas/mathematics/college/1hy1ynrnu4rsswdstaadgeqizoorwf1i5a.png)
now.. hmmm -8/15 is rather ambiguous, since the negative sign is in front of the rational, and either 8 or 15 can be negative, now, we happen to choose the 8 to get the minus, but it could have been 8/-15
ok, well hmm so, the issue boils down to

now, let's take a peek at the second angle, angle β

now, with that in mind, let's use the angle sum identity for cosine
