Answer:
1
Explanation:
Tan 13π/4 = tan(3π + 1/4π)
According to the trigonometry identity;
tan(A+B) = tanA + tanB/1-tanAtanB
If A = 3π and B = π/4
tan(3π + 1/4π) = tan 3π + tanπ/4/1-tan3πtanπ/4
If πrad = 180°
tan(3π + 1/4π) = tan 540° + tan45°/1-tan540°tan45°
tan(3π + 1/4π) = 0+1/1-0(1)
tan(3π + 1/4π) = 1/1-0
tan(3π + 1/4π) = 1/1
tan(3π + 1/4π) = 1
tan 13π/4 = 1