88.9k views
0 votes
I kinda forgot my trig (kinda)

full explanations required, (including citation of the identity)
3 questions

1.
if
tan \theta= (12)/(5) and
0 \leq \theta \leq (\pi)/(2), then secΘ=
2.
if
sin \theta= (3)/(5) and
0 \leq \theta \leq (\pi)/(2), then
tan \theta=
3. if
cos \theta= (4)/(5) and
0 \leq \theta \leq (\pi)/(2), then
cot \theta=

show all work

2 Answers

6 votes

Answer:

:p irlya its 81

Explanation:

User Cerd
by
8.0k points
2 votes

\sec^2\theta=1+\tan^2\theta\implies \sec\theta=\pm√(1+\tan^2\theta)

Since
\cos\theta>0 for
0<\theta<\frac\pi2, we have
\sec\theta>0, so we take the positive root. Now,


\sec\theta=\sqrt{1+\left(\frac{12}5\right)^2}=\frac{13}5

- - -


\tan\theta=(\sin\theta)/(\cos\theta)

\cos^2\theta=1-\sin^2\theta

In the first quadrant, cosine is positive, so


\cos\theta=√(1-\sin^2\theta)

and in turn,


\sin\theta=\frac35\implies\cos\theta=√(1-\left(\frac35\right)^2)=\frac45

\implies\tan\theta=(\frac35)/(\frac45)=\frac34

- - -

In the previous problem, we had
\cos\theta=\frac45, so we must have
\tan\theta=\frac34, which means


\cot\theta=\frac1{\tan\theta}=\frac1{\frac34}=\frac43
User Dar Whi
by
8.1k points