155k views
3 votes
If line segment RU is considered the base of parallelogram RSTU, what is the corresponding height of the parallelogram?

If line segment RU is considered the base of parallelogram RSTU, what is the corresponding-example-1
User Cruzanmo
by
5.9k points

2 Answers

2 votes
vertices: (1,1) ,(4,5) , (10,4) , (7,0)
we can use the cross product
| RU X RS | / distance(1,1,4,5)

b)5.4 units
User Junis
by
6.1k points
6 votes

Answer-

The corresponding height of the parallelogram is
(27)/(5) units

Solution-

Hint- The perpendicular distance between the point S and the straight line RU is the length of the height of the parallelogram.

Equation of RU-

Applying two point formula between (4, 5), (1, 1)


\Rightarrow (y-y_1)/(y_2-y_1)=(x-x_1)/(x_2-x_1)


\Rightarrow (y-5)/(1-5)=(x-4)/(1-4)


\Rightarrow (y-5)/(-4)=(x-4)/(-3)


\Rightarrow (y-5)/(4)=(x-4)/(3)


\Rightarrow 3(y-5)=4(x-4)


\Rightarrow 3y-15=4x-16


\Rightarrow 4x-3y-1=0

Perpendicular distance between S and RU-

The distance d from a point (x₀, y₀) to the line ax+by+c=0 is


d=(|ax_0+by_0+c|)/(√(a^2+b^2))

Distance of (7, 0) from line
4x-3y-1=0 is,


d=(|(4)(7)+(-3)(0)+(-1)|)/(√((4)^2+(-3)^2))


=(|28-1|)/(√(16+9))


=(|27|)/(√(25))


=(27)/(5)

User Antoine Eskaros
by
6.6k points