146k views
5 votes
Find the Fourier series of f on the given interval. f(x) = 1, ?7 < x < 0 1 + x, 0 ? x < 7

1 Answer

5 votes

f(x)=\begin{cases}1&amp;\text{for }-7<x<0\\1+x&amp;\text{for }0\le x<7\end{cases}

The Fourier series expansion of
f(x) is given by


\frac{a_0}2+\displaystyle\sum_(n\ge1)a_n\cos\frac{n\pi x}7+\sum_(n\ge1)b_n\sin\frac{n\pi x}7

where we have


a_0=\displaystyle\frac17\int_(-7)^7f(x)\,\mathrm dx

a_0=\displaystyle\frac17\left(\int_(-7)^0\mathrm dx+\int_0^7(1+x)\,\mathrm dx\right)

a_0=\frac{7+\frac{63}2}7=\frac{11}2

The coefficients of the cosine series are


a_n=\displaystyle\frac17\int_(-7)^7f(x)\cos\frac{n\pi x}7\,\mathrm dx

a_n=\displaystyle\frac17\left(\int_(-7)^0\cos\frac{n\pi x}7\,\mathrm dx+\int_0^7(1+x)\cos\frac{n\pi x}7\,\mathrm dx\right)

a_n=(9\sin n\pi)/(n\pi)+(7\cos n\pi-7)/(n^2\pi^2)

a_n=(7(-1)^n-7)/(n^2\pi^2)

When
n is even, the numerator vanishes, so we consider odd
n, i.e.
n=2k-1 for
k\in\mathbb N, leaving us with


a_n=a_(2k-1)=(7(-1)-7)/((2k-1)^2\pi^2)=-(14)/((2k-1)^2\pi^2)

Meanwhile, the coefficients of the sine series are given by


b_n=\displaystyle\frac17\int_(-7)^7f(x)\sin\frac{n\pi x}7\,\mathrm dx

b_n=\displaystyle\frac17\left(\int_(-7)^0\sin\frac{n\pi x}7\,\mathrm dx+\int_0^7(1+x)\sin\frac{n\pi x}7\,\mathrm dx\right)

b_n=-(7\cos n\pi)/(n\pi)+(7\sin n\pi)/(n^2\pi^2)

b_n=(7(-1)^(n+1))/(n\pi)

So the Fourier series expansion for
f(x) is


f(x)\sim\frac{11}4-(14)/(\pi^2)\displaystyle\sum_(n\ge1)\frac1{(2n-1)^2}\cos\frac{(2n-1)\pi x}7+\frac7\pi\sum_(n\ge1)\frac{(-1)^(n+1)}n\sin\frac{n\pi x}7
User Victor Levin
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories