185k views
2 votes
Let X be a normal random variable with X ? N (0, 1), what is the distribution function and density function of Y = X2

1 Answer

1 vote
With
Y=X^2, note that the support of
Y will be all non-negative real numbers.


F_Y(y)=\mathbb P(Y\le y)

F_Y(y)=\mathbb P(X^2\le y)

F_Y(y)=\mathbb P(|X|\le\sqrt y)

F_Y(y)=\mathbb P(-\sqrt y\le X\le\sqrt y)

F_Y(t)=\mathbb P(X\le\sqrt y)-\mathbb P(X\le-\sqrt y)

F_Y(y)=F_X(\sqrt y)-F_X(-\sqrt y)

Since
X\sim\mathcal N(0,1), you have


F_X(x)=\mathbb P(X\le x)=\displaystyle\frac1{√(2\pi)}\int_(-\infty)^xe^(-t^2/2)\,\mathrm dt=\frac12+\frac12\mathrm{erf}\left(\frac x{\sqrt2}\right)

(where
\mathrm{erf}(x) denotes the error function) and so


F_Y(y)=\left(\frac12+\frac12\mathrm{erf}\left(√(\frac y2)\right)\right)-\left(\frac12+\frac12\mathrm{erf}\left(-√(\frac y2)\right)\right)

F_Y(y)=\mathrm{erf}\left(√(\frac y2)}\right)

\implies f_Y(y)=(\mathrm dF_Y(y))/(\mathrm dy)=\frac1{√(2\pi)}(e^(-y/2))/(\sqrt y)

where
y\ge0.
User Nikola Jovic
by
8.1k points

No related questions found