185k views
2 votes
Let X be a normal random variable with X ? N (0, 1), what is the distribution function and density function of Y = X2

1 Answer

1 vote
With
Y=X^2, note that the support of
Y will be all non-negative real numbers.


F_Y(y)=\mathbb P(Y\le y)

F_Y(y)=\mathbb P(X^2\le y)

F_Y(y)=\mathbb P(|X|\le\sqrt y)

F_Y(y)=\mathbb P(-\sqrt y\le X\le\sqrt y)

F_Y(t)=\mathbb P(X\le\sqrt y)-\mathbb P(X\le-\sqrt y)

F_Y(y)=F_X(\sqrt y)-F_X(-\sqrt y)

Since
X\sim\mathcal N(0,1), you have


F_X(x)=\mathbb P(X\le x)=\displaystyle\frac1{√(2\pi)}\int_(-\infty)^xe^(-t^2/2)\,\mathrm dt=\frac12+\frac12\mathrm{erf}\left(\frac x{\sqrt2}\right)

(where
\mathrm{erf}(x) denotes the error function) and so


F_Y(y)=\left(\frac12+\frac12\mathrm{erf}\left(√(\frac y2)\right)\right)-\left(\frac12+\frac12\mathrm{erf}\left(-√(\frac y2)\right)\right)

F_Y(y)=\mathrm{erf}\left(√(\frac y2)}\right)

\implies f_Y(y)=(\mathrm dF_Y(y))/(\mathrm dy)=\frac1{√(2\pi)}(e^(-y/2))/(\sqrt y)

where
y\ge0.
User Nikola Jovic
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories