473,260 views
21 votes
21 votes
For the function f(x) = x^4 - 5x^3, find inflection points A) Inflection point(s) of f(x):

User ManInMoon
by
3.1k points

1 Answer

20 votes
20 votes

Given


f(x)=x^4-5x^3

To find its inflection points, solve the equation f''(x)=0 for x, as shown below


\begin{gathered} \Rightarrow f^(\prime)(x)=4x^3-5*3x^2=4x^3-15x^2 \\ \Rightarrow f^(\prime)(x)=4x^3-15x^2 \\ \\ \end{gathered}

Finding the second derivative,


\begin{gathered} \Rightarrow f^(\prime)^(\prime)(x)=12x^2-30x \\ \Rightarrow f^(\prime)^(\prime)(x)=0 \\ \Rightarrow12x^2-30x=0 \\ \Rightarrow x(12x-30)=0 \\ \Rightarrow x=0,x=(30)/(12)=(5)/(2) \end{gathered}

Therefore,


\begin{gathered} f(0)=0 \\ f((5)/(2))=((5)/(2))^4-5((5)/(2))^3=-(625)/(16) \end{gathered}

The two inflection points are


\begin{gathered} (0,0) \\ and \\ ((5)/(2),-(625)/(16)) \end{gathered}

Do not confuse inflection points with critical points.

User Vipin Gupta
by
3.2k points