99.6k views
3 votes
What is the sum of the infinite geometric series?

A. –288
B. –216
C. –144
D. –72

What is the sum of the infinite geometric series? A. –288 B. –216 C. –144 D. –72-example-1
User Sidi
by
5.8k points

2 Answers

4 votes
Let
S_N denote the
Nth partial sum of the series. Then


S_N=\displaystyle\sum_(n=1)^N(-144)\left(\frac12\right)^(n-1)

S_N=\displaystyle-144\left(1+\frac12+\frac1{2^2}+\cdots+\frac1{2^(N-1)}+\frac1{2^N}\right)

Multiplying both sides by
\frac12 gives


\frac12S_N=\displaystyle\sum_(n=1)^N(-144)\left(\frac12\right)^n

\frac12S_N=\displaystyle-144\left(\frac12+\frac1{2^2}+\frac1{2^3}+\cdots+\frac1{2^N}+\frac1{2^(N+1)}\right)

Subtracting the last expression from
S_N, we have


S_N-\frac12S_N=-144\left(1+\frac12+\frac1{2^2}+\cdots+\frac1{2^(N-1)}+\frac1{2^N}\right)-(-144)\left(\frac12+\frac1{2^2}+\frac1{2^3}+\cdots+\frac1{2^N}+\frac1{2^(N+1)}\right)

\displaystyle\frac12S_N=-144\left(1-\frac1{2^(N+1)}\right)

\displaystyle S_N=-288\left(1-\frac1{2^(N+1)}\right)

As
N\to\infty, we end up with the original infinite series. The rational term approaches 0, leaving us with


\displaystyle\sum_(n=1)^\infty(-144)\left(\frac12\right)^(n-1)=\lim_(n\to\infty)S_N=-288

so the answer is A.
User Funka
by
6.5k points
7 votes

Answer:

Option A is correct that is -288

Step-by-step explanation:

Formula for sum of infinite geometric progression
S_(\infty) =(a)/(1-r)

where,

a is the first of geometric series

r is the common ratio of geometric series

here, a= -144 and r=1/2

Now, substituting the values in the formula we will get


\Rightarrow (-144)/(1-(1)/(2))\\\\\Rightarrow -288

sum of the infinite geometric series= -288

So, Option A is correct that is -288


User Ultrakorne
by
6.5k points