4.3k views
0 votes
If m varies directly as the square root of y, inversely as p2, and directly as n, what happens to m when y is quadrupled, p is tripled, and n is multiplied by 5?

A. m is divided by 10/9 B. m is multiplied by 9/10 C. It stays the same D. m is multiplied by 10/9

User Subhan Ali
by
8.1k points

1 Answer

2 votes

\bf \begin{array}{cccccclllll} \textit{something}&&\textit{varies directly to}&&\textit{something else}\\ \quad \\ \textit{something}&=&{{ \textit{some value}}}&\cdot &\textit{something else}\\ \quad \\ y&=&{{ k}}&\cdot&x \\ && y={{ k }}x \end{array}\\\\ -----------------------------\\\\


\bf % inverse proportional variation \begin{array}{llllll} \textit{something}&&\textit{varies inversely to}&\textit{something else}\\ \quad \\ \textit{something}&=&\cfrac{{{\textit{some value}}}}{}&\cfrac{}{\textit{something else}}\\ \quad \\ y&=&\cfrac{{{\textit{k}}}}{}&\cfrac{}{x} \\ &&y=\cfrac{{{ k}}}{x} \end{array}

now... let's see

"m varies directly as the square root of y, inversely as p², and directly as n"

\bf m=\cfrac{k√(y)\cdot n}{p^2}

now, let's quadruple "y", multiply "n" by 5 and "p" by 3


\bf m=\cfrac{k√(y)\cdot n}{p^2}\qquad \begin{cases} y=4y\\ p=3p\\ n=5n \end{cases}\implies m=\cfrac{k√(4y)\cdot 5n}{(3p)^2} \\\\\\ m=\cfrac{k√(2^2y)\cdot 5n}{(3^2p^2)}\implies m=\cfrac{k2√(y)\cdot 5n}{(9p^2)}\implies m=\cfrac{k√(y)\cdot n}{p^2}\cdot \cfrac{2\cdot 5}{9} \\\\\\ m=\cfrac{k√(y)\cdot n}{p^2}\cdot \cfrac{10}{9}\implies \cfrac{9}{10}\cdot m=\cfrac{k√(y)\cdot n}{p^2}
User Sven Eppler
by
7.3k points