231k views
4 votes
Y"-4y'+4y=0 y1=e^2x find the general solution

User Grongor
by
8.4k points

1 Answer

0 votes
Given that
y_1=e^(2x) is a known solution to the ODE, we can reduce the order of the ODE to find a second solution of the form


y_2=y_1v=e^(2x)v

\implies {y_2}'=2e^(2x)v+e^(2x)v'

\implies {y_2}''=4e^(2x)v+4e^(2x)v'+e^(2x)v''

Substituting into the ODE, we get


(e^(2x)v''+4e^(2x)v'+4e^(2x)v)-4(e^(2x)v'+2e^(2x)v)+4e^(2x)v=e^(2x)

e^(2x)v''=e^(2x)

v''=1

\implies v'=C_1

\implies v=C_1x+C_2

\implies y_2=C_1xe^(2x)+C_2e^(2x)

We already know about
e^(2x) as a solution to the ODE, which means
y_2=xe^(2x).

That covers the characteristic solution. To find the particular solution to the nonhomogeneous ODE, suppose there is a solution of the form


y_p=ax^2e^(2x)

{y_p}'=2ax(x+1)e^(2x)

{y_p}''=2a(2x^2+4x+1)e^(2x)

Substituting into the ODE yields


{y_p}''-4{y_p}'+4{y_p}=2ae^(2x)=e^(2x)\implies a=\frac12

so that the general solution is


y=C_1y_1+C_2y_2+y_p

y=C_1e^(2x)+C_2xe^(2x)+\frac12x^2e^(2x)
User Marcus Rickert
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories