231k views
4 votes
Y"-4y'+4y=0 y1=e^2x find the general solution

User Grongor
by
8.4k points

1 Answer

0 votes
Given that
y_1=e^(2x) is a known solution to the ODE, we can reduce the order of the ODE to find a second solution of the form


y_2=y_1v=e^(2x)v

\implies {y_2}'=2e^(2x)v+e^(2x)v'

\implies {y_2}''=4e^(2x)v+4e^(2x)v'+e^(2x)v''

Substituting into the ODE, we get


(e^(2x)v''+4e^(2x)v'+4e^(2x)v)-4(e^(2x)v'+2e^(2x)v)+4e^(2x)v=e^(2x)

e^(2x)v''=e^(2x)

v''=1

\implies v'=C_1

\implies v=C_1x+C_2

\implies y_2=C_1xe^(2x)+C_2e^(2x)

We already know about
e^(2x) as a solution to the ODE, which means
y_2=xe^(2x).

That covers the characteristic solution. To find the particular solution to the nonhomogeneous ODE, suppose there is a solution of the form


y_p=ax^2e^(2x)

{y_p}'=2ax(x+1)e^(2x)

{y_p}''=2a(2x^2+4x+1)e^(2x)

Substituting into the ODE yields


{y_p}''-4{y_p}'+4{y_p}=2ae^(2x)=e^(2x)\implies a=\frac12

so that the general solution is


y=C_1y_1+C_2y_2+y_p

y=C_1e^(2x)+C_2xe^(2x)+\frac12x^2e^(2x)
User Marcus Rickert
by
8.5k points