122k views
2 votes
Solve the equation exactly overbthe interval [0,360)

Sin^2x-cos^2x=0

User Sarfraz
by
9.0k points

1 Answer

3 votes

\bf sin^2(\theta)+cos^2(\theta)=1\implies cos^2(\theta)=1-sin^2(\theta)\\\\ -----------------------------\\\\


\bf sin^2(x)-cos^2(x)\implies sin^2(x)-[1-sin^2(x)]=0 \\\\\\ sin^2(x)-1+sin^2(x)=0\implies 2sin^2(x)=1\implies sin^2(x)=\cfrac{1}{2} \\\\\\ sin(x)=\pm\sqrt{\cfrac{1}{2}}\implies \measuredangle x=sin^(-1)\left( \pm\sqrt{\cfrac{1}{2}} \right)\iff \measuredangle x=sin^(-1)\left( \pm\cfrac{√(2)}{2} \right) \\\\\\ \measuredangle x= \begin{cases} (\pi )/(4)\\\\ (3\pi )/(4)\\\\ (5\pi )/(4)\\\\ (7\pi )/(4) \end{cases}
User Joao Polo
by
8.4k points

No related questions found