174k views
3 votes
Simultaneous ODE

I have
y_(1) ' = (5)/(2) y_(1) - (3)/(2) y_(2) and
y_(2) ' = -(3)/(2) y_(1) + (5)/(2) y_(2)
How do I proceed to find y_{1} and y_{2}?

1 Answer

1 vote

\mathbf y'=\mathbf A\mathbf y\iff\begin{bmatrix}{y_1}'\\{y_2}'\end{bmatrix}=\begin{bmatrix}\frac52&-\frac32\\-\frac32&\frac52\end{bmatrix}\begin{bmatrix}y_1\\y_2\end{bmatrix}

Find the eigensystem corresponding to the coefficient matrix.


\det(\mathbf A-\lambda\mathbf I)=\begin{vmatrix}\frac52-\lambda&-\frac32\\-\frac32&\frac52-\lambda\end{vmatrix}=0

\left(\frac52-\lambda\right)^2-\left(-\frac32\right)^2=0

\lambda^2-5\lambda+4=0

(\lambda-1)(\lambda-4)=0

\implies \lambda_1=1,\lambda_2=4

For
\lambda_1=1, the associated eigenvector satisfies


(\mathbf A-\mathbf I)\mathbf v_1=\mathbf 0\iff\begin{bmatrix}\frac32&-\frac32\\-\frac32&\frac32\end{bmatrix}\begin{bmatrix}v_(11)\\v_(12)\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

\implies v_(11)-v_(12)=0\implies\mathbf v_1=\begin{bmatrix}1\\1\end{bmatrix}

For
\lambda_2=4, we have


(\mathbf A-4\mathbf I)\mathbf v_2=\mathbf 0\iff\begin{bmatrix}-\frac32&-\frac32\\-\frac32&-\frac32\end{bmatrix}\begin{bmatrix}v_(21)\\v_(22)\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

\implies v_(21)+v_(22)=0\implies\mathbf v_2=\begin{bmatrix}1\\-1\end{bmatrix}

The general solution for the ODE system is then


\mathbf y=C_1e^(\lambda_1t)\mathbf v_1+C_2e^(\lambda_2t)\mathbf v_2

\iff\begin{bmatrix}y_1\\y_2\end{bmatrix}=C_1e^t\begin{bmatrix}1\\1\end{bmatrix}+C_2e^(4t)\begin{bmatrix}1\\-1\end{bmatrix}

\implies\begin{bmatrix}y_1\\y_2\end{bmatrix}=\begin{bmatrix}C_1e^t+C_2e^(4t)\\C_1e^t-C_2e^(4t)\end{bmatrix}
User Keith Beard
by
6.0k points