165k views
3 votes
Which polynomial is equivalent to (2h − 3k)(h + 5k)?

A) 2h2 + 7hk − 15k2

B) 2h2 − 7hk − 15k2

C) 2h2 + 7hk + 15k2

D) 2h2 − 7hk + 15k2

User Zaphod
by
8.6k points

2 Answers

0 votes
2h^2 + 7hk -15k^2
you can use factoring
Which polynomial is equivalent to (2h − 3k)(h + 5k)? A) 2h2 + 7hk − 15k2 B) 2h2 − 7hk-example-1
User Gennadii Saprykin
by
7.5k points
2 votes

Answer:

Option (a) is correct.

An equivalent polynomial to the given polynomial
\left(2h\:−\:3k\right)\left(h\:+\:5k\right) is
2h^2+7hk-15k^2

Explanation:

Given : Polynomial
\left(2h\:−\:3k\right)\left(h\:+\:5k\right)

We have to find an equivalent polynomial to the given polynomial
\left(2h\:−\:3k\right)\left(h\:+\:5k\right)

Consider the given polynomial
\left(2h\:−\:3k\right)\left(h\:+\:5k\right)

Apply FOIL method,
\left(a+b\right)\left(c+d\right)=ac+ad+bc+bd


a=2h,\:b=-3k,\:c=h,\:d=5k


=2hh+2h\cdot \:5k+\left(-3k\right)h+\left(-3k\right)\cdot \:5k

Apply plus minus rule,
+(-a)=-a


=2hh+2\cdot \:5hk-3hk-3\cdot \:5kk

Add similar terms, we have,


\:10hk-3hk=7hk

We have,


=2h^2+7hk-15k^2

Thus, An equivalent polynomial to the given polynomial
\left(2h\:−\:3k\right)\left(h\:+\:5k\right) is
2h^2+7hk-15k^2

User Anindis
by
8.2k points