200k views
2 votes
Find all complex fourth roots of z=-10000

User ClubbedAce
by
8.5k points

1 Answer

4 votes

\bf z=-10000\iff \begin{array}{lcclll} z=&-10000&+0i\\ \end{array}\implies (-10000,0)\\\\ -----------------------------\\\\ r=√(a^2+b^2)\ \begin{cases} a=10000\\ b=0 \end{cases}\implies r=√(10000^2+0^2)\implies r=10000 \\\\\\ \textit{now, if you notice the picture below, for those coordinates}\\\\ \textit{the angle will then be }\pi \\\\\\ thus\implies z=10000\left[cos(\pi )+i\ sin(\pi ) \right]


\bf \sqrt[n]{z}=\sqrt[n]{r}\left[ cos\left( (\theta+2\pi k)/(n) \right) +i\ sin\left( (\theta+2\pi k)/(n) \right)\right]\\\\ -----------------------------\\\\ \sqrt[4]{z}=\sqrt[4]{10000}\left[ cos\left( (\pi +2\pi k)/(4) \right) +i\ sin\left( (\pi +2\pi k)/(4) \right)\right]\\\\ -----------------------------\\\\


\bf \boxed{k=1}\qquad \sqrt[4]{10000}\left[ cos\left( (\pi +2\pi k)/(4) \right) +i\ sin\left( (\pi +2\pi k)/(4) \right)\right] \\\\\\ 10\left[ cos\left( (3\pi)/(4) \right) +i\ sin\left( (3\pi)/(4) \right)\right]\implies 10\left(\cfrac{-√(2)}{2}+i\ \cfrac{√(2)}{2} \right) \\\\\\ -5√(2)+i\ 5√(2)


\bf \boxed{k=2}\qquad \sqrt[4]{10000}\left[ cos\left( (\pi +2\pi k)/(4) \right) +i\ sin\left( (\pi +2\pi k)/(4) \right)\right] \\\\\\ 10\left[ cos\left( (5\pi)/(4) \right) +i\ sin\left( (5\pi)/(4) \right)\right]\implies 10\left(\cfrac{-√(2)}{2}+i\ \cfrac{-√(2)}{2} \right) \\\\\\ -5√(2)-i\ 5√(2)


\bf \boxed{k=3}\qquad \sqrt[4]{10000}\left[ cos\left( (\pi +2\pi k)/(4) \right) +i\ sin\left( (\pi +2\pi k)/(4) \right)\right] \\\\\\ 10\left[ cos\left( (7\pi)/(4) \right) +i\ sin\left( (7\pi)/(4) \right)\right]\implies 10\left(\cfrac{√(2)}{2}+i\ \cfrac{-√(2)}{2} \right) \\\\\\ 5√(2)-i\ 5√(2)


\bf \boxed{k=4}\qquad \sqrt[4]{10000}\left[ cos\left( (\pi +2\pi k)/(4) \right) +i\ sin\left( (\pi +2\pi k)/(4) \right)\right] \\\\\\ 10\left[ cos\left( (9\pi)/(4) \right) +i\ sin\left( (9\pi)/(4) \right)\right]\implies 10\left(\cfrac{√(2)}{2}+i\ \cfrac{√(2)}{2} \right) \\\\\\ 5√(2)+i\ 5√(2)

recall that the angle
\bf \cfrac{9\pi}{4} \iff \cfrac{\pi}{4}
Find all complex fourth roots of z=-10000-example-1
User Kibaekr
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories