470,016 views
12 votes
12 votes
Suppose A is in quadrant IV and B is in Quadrant IV

Suppose A is in quadrant IV and B is in Quadrant IV-example-1
User VRallev
by
3.3k points

1 Answer

12 votes
12 votes

From the given data,


\begin{gathered} cos(A)\text{ = }(15)/(17) \\ sin^2(A)\text{ = 1 -\lparen}(15)/(17))^2 \\ sin^2(A)\text{ = 1 - }(225)/(289) \\ sin^2(A)\text{ =}\frac{289\text{ - 225}}{289} \\ sin^2(A)\text{ = }(64)/(289) \\ sin(A)\text{ = -}(8)/(17)_\text{ \_\_\_\_\_\_\_\lparen Lies on 4th quadrant\rparen} \end{gathered}

And


\begin{gathered} cos(B)\text{ = }(9)/(41) \\ sin^2(B)\text{ = 1 - \lparen}(9)/(41))^2 \\ sin^2(B)\text{ = 1 - }(81)/(1681) \\ sin^2(B)\text{ = }\frac{1681\text{ - 81}}{1681} \\ sin^2(B)\text{ = }(1600)/(1681) \\ sin^(B)\text{ = -}(40)/(41)\text{ \_\_\_\_\_\_\_\lparen lies on 4th quadrant\rparen} \\ \end{gathered}

Calculating the required value,


\begin{gathered} cos(A-B)\text{ = cosAcosB + sinAsinB} \\ cos(A-B)\text{ = \lparen}(15)/(17))((9)/(41))\text{ + \lparen-}(8)/(17))((-40)/(41)) \\ cos(A-B)\text{ = }(135)/(697)\text{ + }(320)/(697) \\ cos(A-B)\text{ = }(455)/(697) \end{gathered}

Thus the required answer is,


cos(A-B)=(455)/(697)

User Sultan Mahmud
by
2.4k points