35.2k views
2 votes
Find the second derivative of (x^2)(y^2)-12x=8 (implicit differentiation).

1 Answer

4 votes

\bf x^2y^2-12x=8\\\\ -----------------------------\\\\ 2xy^2+x^22y\cfrac{dy}{dx}-12x=0\implies 2x\left[ y^2+xy\cfrac{dy}{dx}-6 \right]=0 \\\\\\ xy\cfrac{dy}{dx}=6-y^2\implies \boxed{\cfrac{dy}{dx}=\cfrac{6-y^2}{xy}}


\bf \textit{now, using the quotient rule to get }\cfrac{dy^2}{dx^2} \\\\\\ \cfrac{dy^2}{dx^2}=\cfrac{-2y(dy)/(dx)xy-(6-y^2)\left( y+x(dy)/(dx) \right)}{(xy)^2} \\\\\\


\bf now\implies \begin{cases} -2y(dy)/(dx)xy\\\\ -2y(6-y^2)/(xy)xy\\\\ -2y(6-y^2)\\\\ 2y^3-12y \end{cases}\quad \begin{cases} y+x(dy)/(dx)\\\\ y+x(6-y^2)/(xy)\\\\ y+(6-y^2)/(y)\\\\ (y^2+6-y^2)/(y)\\\\ (6)/(y) \end{cases}


\bf \\\\\\ \cfrac{dy^2}{dx^2}=\cfrac{2y^3-12y-(6-y^2)(6)/(y)}{x^2y^2} \\\\\\ \cfrac{dy^2}{dx^2}=\cfrac{2y^3-12y-(36-6y^2)/(y)}{x^2y^2} \\\\\\ \cfrac{dy^2}{dx^2}=\cfrac{2y^4-12y^2-36+6y^2}{y}\cdot \cfrac{1}{x^2y^2} \\\\\\ \cfrac{dy^2}{dx^2}=\cfrac{2y^4-6y^2-36}{x^2y^2}
User Ajwhiteway
by
8.5k points