432,559 views
11 votes
11 votes
Simplify each expression
9 \sqrt{2(4 √(6)) }

User Henry Ward
by
2.8k points

1 Answer

29 votes
29 votes

The expression to simplify is:


9\sqrt[]{2}(4\sqrt[]{6})

When we are multiplying two racial expressions, we multiply the constants together and the square roots together. So, the next step is:


\begin{gathered} 9\sqrt[]{2}(4\sqrt[]{6}) \\ =(9*4)(\sqrt[]{2}*\sqrt[]{6}) \\ =36(\sqrt[]{2}*\sqrt[]{6}) \end{gathered}

Now, we an use the property


\sqrt[]{a}*\sqrt[]{b}=\sqrt[]{a* b}

to simplify it further:


\begin{gathered} 36(\sqrt[]{2}*\sqrt[]{6}) \\ =36(\sqrt[]{2*6}) \\ =36\sqrt[]{12} \end{gathered}

We can break apart the square root using the property:


\sqrt[]{ab}=\sqrt[]{a}\sqrt[]{b}

So, we have:


\begin{gathered} 36\sqrt[]{12} \\ =36\sqrt[]{2}\sqrt[]{2}\sqrt[]{3} \end{gathered}

For the final simplification, we use the property,


\sqrt[]{a}\sqrt[]{a}=a

The final answer is:


\begin{gathered} 36\sqrt[]{2}\sqrt[]{2}\sqrt[]{3} \\ =36(2)\sqrt[]{3} \\ =72\sqrt[]{3} \end{gathered}Answer
72\sqrt[]{3}

User Toni Tegar Sahidi
by
2.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.