178k views
1 vote
Solve the equation 2^(2x+1)+8=17×2^x.

1 Answer

4 votes
oooh, looks fun

ok
erm
we might want to know some properties

(x^m)(x^n)=x^(m+n)

(a^b)^c=a^(bc)
if
a^m=a^n where a=a, then assume m=n


2^(2x+1)=(2^(2x))(2^1)
so

(2^(2x))(2)+8=17(2^x)

(2^(2x))(2)+2^3=17(2^x)

(2^x)^2(2)+2^3=17(2^x)
minus 17*2^x both sides

(2^x)^2(2)+2^3-17(2^x)=0
use u subsitution, u=2ˣ

(u)^2(2)+2^3-17(u)=0
solve
2u^2+8-17u=0
or

2u^2-17u+8=0
ac method
2 times 8=16
what 2 number multiply to get -17 and add to get 16
-16 and -1
2u²-1u-16u+8=0
(2u²-1u)+(-16u+8)=0
u(2u-1)+(-8)(2u-1)=0
(u-8)(2u-1)+0
u-8=0
u=8

2u-1=0
2u=1
u=1/2

now
u=2ˣ

8=2ˣ

2^3=2^x
3=x

and

(1)/(2)=2^x

2^(-1)=2^x
-1=x

x=-1 and 3
neat problem
User Todd Walton
by
8.3k points