214k views
4 votes
What is the solution of log3x − 2125 = 3

User Fza
by
5.8k points

2 Answers

3 votes
the answer is x=7/3 hope this helps 
User Neil Yoga Crypto
by
6.2k points
2 votes

Answer:

The solution for the given expression
\log _(3x-2)\left(125\right)=3 is
(7)/(3)

Explanation:

Given : Expression
\log _(3x-2)\left(125\right)=3

We have to find the solution for the given expression
\log _(3x-2)\left(125\right)=3

Consider the given expression
\log _(3x-2)\left(125\right)=3

Apply log rule,
\log _a\left(b\right)=(\ln \left(b\right))/(\ln \left(a\right))


\log _(3x-2)\left(125\right)=(\ln \left(125\right))/(\ln \left(3x-2\right))


(\ln \left(125\right))/(\ln \left(3x-2\right))=3

Multiply both side by
\ln \left(3x-2\right)

We get,
(\ln \left(125\right))/(\ln \left(3x-2\right))\ln \left(3x-2\right)=3\ln \left(3x-2\right)

Simplify , we have,


\ln \left(125\right)=3\ln \left(3x-2\right)

Divide both sie by 3, we get,


(3\ln \left(3x-2\right))/(3)=(\ln \left(125\right))/(3)

Also,
(\ln \left(125\right))/(3)=(\ln \left(5^3\right))/(3)=(3\ln \left(5\right))/(3)=\ln(5)

Thus,
\ln \left(3x-2\right)=\ln \left(5\right)

When logs have same base, we have,


\log _b\left(f\left(x\right)\right)=\log _b\left(g\left(x\right)\right)\quad \Rightarrow \quad f\left(x\right)=g\left(x\right)

Thus,
3x - 2 = 5

Add 2 both sides, we have,


3x = 7

Divide both side by 3, we have,


x=(7)/(3)

Thus, the solution for the given expression
\log _(3x-2)\left(125\right)=3 is
(7)/(3)

User Valdemar
by
6.4k points