477,285 views
3 votes
3 votes
Given a and b are first quadrant angles, sin a=5/13 and cos b=3/5 evaluate tan(a-b)1) 33/562) -33/563) -21/56

User NachoSoto
by
2.3k points

1 Answer

9 votes
9 votes

The angles given are


\sin a=(5)/(13),\cos b=(3)/(5)

Determine the value of cos a


\cos a=\sqrt[]{1-(25)/(169)}=(12)/(13)

Determine the value of sin b


\sin b=\sqrt[]{1-(9)/(25)}=(4)/(5)

The value of tan a is


\tan \text{ a=}((5)/(13))/((12)/(13))=(5)/(13)*(13)/(12)=(5)/(12)

The value of tan b is


\tan b=((4)/(5))/((3)/(5))=(4)/(3)

The value of tan(a-b) is


\tan (a-b)=(\tan a-tanb)/(1+\tan a\tan b)
\tan (a-b)=((5)/(12)-(4)/(3))/(1+(5)/(12)*(4)/(3))=((5-16)/(12))/(1+(5)/(9))=((-11)/(12))/((14)/(9))=-(11)/(12)*(9)/(14)=-(11)/(4)*(3)/(14)=-(33)/(56)
\tan (a-b)=-(33)/(56)

Hence the correct option is 2.

User Veight
by
3.1k points