172k views
1 vote
Use trig identities to change

\[ \frac{sec^3~\theta}{tan~\theta} \]
to
\[ sec~\theta~tan~\theta~+~csc~\theta \]

2 Answers

4 votes

Hope it helps.

If you have any query, feel free to ask.

Use trig identities to change \[ \frac{sec^3~\theta}{tan~\theta} \] to \[ sec~\theta-example-1
User Samuel Olufemi
by
5.1k points
6 votes

RTP: (sec^(3)(x))/(tan(x)) = sec(x) \cdot tan(x) + cosec(x)


LHS = (sec^(3)(x))/(tan(x))

= (sec^(2)(x))/(tan(x)) \cdot sec(x)


sec^(2)(x) = tan^(2)(x) + 1

LHS = (tan^(2)(x) + 1)/(tan(x)) \cdot sec(x)

= (tan(x) + (1)/(tan(x))) \cdot sec(x)

= (tan(x) + cot(x)) \cdot sec(x)

= sec(x) \cdot tan(x) + cot(x) \cdot sec(x)

= sec(x) \cdot tan(x) + (1)/(cos(x)) \cdot (cos(x))/(sin(x))

= sec(x) \cdot tan(x) + (1)/(sin(x))


= sec(x) \cdot tan(x) + cosec(x)

= RHS


\therefore (sec^(3)(x))/(tan(x)) = sec(x) \cdot tan(x) + cosec(x)
User Leiba
by
5.8k points