185k views
4 votes
Integrate cosx/(2+cosx)

User UWSkeletor
by
8.2k points

1 Answer

5 votes

\displaystyle\int(\cos x)/(2+\cos x)\,mathrm dx

Let
y=\tan\frac x2, so that


\cos x=\cos2\left(\frac x2\right)=\cos^2\frac x2-\sin^2\frac x2=(1-y^2)/(1+y^2)

\mathrm dy=\frac12\sec^2\frac x2\,\mathrm dx\implies2\cos^2\frac x2\,\mathrm dy=\frac2{1+y^2}\,\mathrm dy=\mathrm dx

Then


\displaystyle\int(\cos x)/(2+\cos x)\,\mathrm dx=\int((1-y^2)/(1+y^2))/(2+(1-y^2)/(1+y^2))\frac2{1+y^2}\,\mathrm dy

=\displaystyle-2\int(y^2-1)/((y^2+3)(y^2+1))\,\mathrm dy

=\displaystyle\int\left(\frac2{y^2+1}-\frac4{y^2+3}\right)\,\mathrm dy

=2\arctan y-\frac4{\sqrt3}\arctan\frac y{\sqrt3}+C

=2\arctan\left(\tan\frac x2\right)-\frac4{\sqrt3}\arctan\left(\frac1{\sqrt3}\tan\frac x2\right)+C

=x-\frac4{\sqrt3}\arctan\left(\frac1{\sqrt3}\tan\frac x2\right)+C
User MadaManu
by
8.0k points

Related questions

asked Nov 27, 2017 188k views
JunaidKhan asked Nov 27, 2017
by JunaidKhan
8.0k points
1 answer
5 votes
188k views
asked Feb 18, 2017 8.8k views
Andz asked Feb 18, 2017
by Andz
8.0k points
1 answer
4 votes
8.8k views
asked May 7, 2023 77.1k views
MEmerson asked May 7, 2023
by MEmerson
8.3k points
1 answer
1 vote
77.1k views