200k views
2 votes
find the volume of the solid bounded below by the xy plane, on the sides by the sphere rho=2 and above by the cone fee= pie over 3

User Divya MV
by
8.3k points

1 Answer

4 votes

\displaystyle\int_(\theta=0)^(\theta=2\pi)\int_(\varphi=\pi/3)^(\varphi=\pi/2)\int_(\rho=0)^(\rho=2)\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\varphi\,\mathrm d\theta

=\displaystyle\left(\int_(\theta=0)^(\theta=2\pi)\mathrm d\theta\right)\left(\int_(\varphi=\pi/3)^(\varphi=\pi/2)\sin\varphi\,\mathrm d\varphi\right)\left(\int_(\rho=0)^(\rho=2)\rho^2\,\mathrm d\rho\right)

=\displaystyle2\pi\left(-\cos\varphi\bigg|_(\varphi=\pi/3)^(\varphi=\pi/2)\right)\left(\frac13\rho^3\bigg|_(\rho=0)^(\rho=2)\right)

=\frac{8\pi}3
User Artur A
by
8.3k points