81.0k views
2 votes
Find the area of the region. Use a graphing utility to verify your result. integral 0 to 7 9x · cubed root 3x + 1 dx

1 Answer

2 votes

\bf \displaystyle \int\limits_(0)^(7)\ 9x\sqrt[3]{3x+1}\cdot dx\\\\ -----------------------------\\\\ u=3x+1\implies \cfrac{du}{dx}=3\implies \cfrac{du}{3}=dx\\\\ -----------------------------\\\\ \displaystyle \int\limits_(0)^(7)\ 9x\sqrt[3]{u}\cdot \cfrac{du}{3}\implies \int_(0)^(7)\ 3x\sqrt[3]{u}\cdot dx\\\\ -----------------------------\\\\ now\qquad u=3x+1\implies u-1=3x\\\\ -----------------------------\\\\


\bf \displaystyle \int\limits_(0)^(7)\ (u-1)u^{(1)/(3)}\cdot dx\implies \int\limits_(0)^(7)\ \left( u^{(4)/(3)}-u^{(1)/(3)} \right) dx\\\\ -----------------------------\\\\ \textit{now, let's change the bounds, using u(x)} \\\\\\ u(x)=3x+1\qquad thus\qquad u(0)=1\qquad u(7)=22\\\\ -----------------------------\\\\


\bf \displaystyle \int\limits_(1)^(22)\ \left( u^{(4)/(3)}-u^{(1)/(3)} \right) dx\implies \cfrac{u^{(7)/(3)}}{(7)/(3)}-\cfrac{u^{(4)/(3)}}{(4)/(3)}\implies \left. \cfrac{3\sqrt[3]{u^7}}{7}-\cfrac{3\sqrt[3]{u^4}}{4}\right]_(1)^(22)

upper-bound part


\bf \left[ \cfrac{3\cdot 1356.187}{7} \right]-\left[ \cfrac{3\cdot 61.645}{4} \right] \\\\\\ 581.22-46.234\approx 534.98936648870

and lower-bound part


\bf \left[ \cfrac{3}{7} \right]-\left[ \cfrac{3}{4} \right]\implies -\cfrac{9}{28} \\\\\\ thus \\\\\\ 534.98936648870355525281-\left( -\cfrac{9}{28} \right) \\\\\\ 534.98936648870355525281+\cfrac{9}{28} \approx 535.31079506013212668138

User Nechemya
by
8.1k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories