120k views
3 votes
1/2(logx4+logxy)-3logxz

1 Answer

4 votes

\bf log_{{ a}}(xy)\implies log_{{ a}}(x)+log_{{ a}}(y) \\ \quad \\ % Logarithm of rationals log_{{ a}}\left( (x)/(y)\right)\implies log_{{ a}}(x)-log_{{ a}}(y) \\ \quad \\ % Logarithm of exponentials log_{{ a}}\left( x^{{ b}} \right)\implies {{ b}}\cdot log_{{ a}}(x)\qquad and\qquad a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^( n)}\\\\ -----------------------------\\\\


\bf \cfrac{1}{2}\left[ log_x(4)+log_x(y) \right]-3log_x(z) \\\\\\ \cfrac{1}{2}\left[ log_x(4\cdot y) \right]-3log_x(z)\implies log_x\left[ (4y)^{(1)/(2)} \right]-log_x(z^3) \\\\\\ log_x\left[ \cfrac{(4y)^{(1)/(2)}}{z^3} \right]\implies log_x\left[ \cfrac{√(4y)}{z^3} \right]
User Superstator
by
8.4k points

Related questions

asked Mar 17, 2022 142k views
Matei Suica asked Mar 17, 2022
by Matei Suica
8.0k points
1 answer
13 votes
142k views