183k views
0 votes
Solve for x: 3 over 3 x plus 1 over quantity x plus 4 equals 10 over 7x .

x = −3
x = 3
x = −3 and x = 3
No solution

Solve for x: 3 over 3 x plus 1 over quantity x plus 4 equals 10 over 7x . x = −3 x-example-1
User Sjishan
by
8.0k points

2 Answers

1 vote
|dw:1363988175508:dw|
-------------------------------------

|dw:1363988369702:dw|
------------------------------------

|dw:1363988448407:dw|
------------------------------------
From thus the answer would be

X = 3

:)



User Scott Centoni
by
8.5k points
2 votes

Answer:


x=3

Explanation:

we have


(3)/(3x)+(1)/(x+4)=(10)/(7x)

The domain of the function is all real numbers except the zero, because the denominator can not be zero

Multiply by
[3x(x+4)7x] both sides


(3[3x(x+4)7x])/(3x)+([3x(x+4)7x])/(x+4)=(10[3x(x+4)7x])/(7x)


(3[3x(x+4)7x])/(3x)+([3x(x+4)7x])/(x+4)=(10[3x(x+4)7x])/(7x)


3[(x+4)7x]+[3x(7x)]=10[3x(x+4)]


21x^(2)+84x+21x^(2)=30x^(2)+120x


42x^(2)+84x=30x^(2)+120x


42x^(2)-30x^(2)+84x-120x=0


12x^(2)-36x=0

Divide by
12 both sides


x^(2)-3x=0

we know that


The formula to solve a quadratic equation of the form
ax^(2) +bx+c=0 is equal to



x=\frac{-b(+/-)\sqrt{b^(2)-4ac}} {2a}


in this problem we have



x^(2)-3x=0

so



a=1\\b=-3\\c=0


substitute in the formula



x=\frac{3(+/-)\sqrt{(-3)^(2)-4(1)(0)}} {2(1)}



x=\frac{3(+/-)√(9)} {2}



x=\frac{3(+/-)3} {2}



x=\frac{3+3} {2}=3



x=\frac{3-3} {2}=0


remember that

The domain of the function is all real numbers except the zero

so

the solution is


x=3

User Simon Michael
by
8.2k points