253,965 views
44 votes
44 votes
find all X-coordinates of points (x,y) on the curve y=(x-5)^6/(x-4)^5 where the tangent line is horizontal

find all X-coordinates of points (x,y) on the curve y=(x-5)^6/(x-4)^5 where the tangent-example-1
User Wks
by
2.4k points

1 Answer

17 votes
17 votes

Given:


y=((x-5)^6)/((x-4)^5)

To Determine: Where the tangent line is horizontal

Solution

Please note where the tangent line is horizontal is when the derivative is equal to zero

Determine the derivative of the function using quotient rule


\begin{gathered} Quotient\text{ rule} \\ If,y=(u)/(v),then,(dy)/(dx)=(v(du)/(dx)-u(dv)/(dx))/(v^2) \end{gathered}
\begin{gathered} Given \\ y=((x-5)^6)/((x-4)^5) \\ u=(x-5)^6 \\ v=(x-4)^5 \end{gathered}
\begin{gathered} u=(x-5)^6 \\ (du)/(dx)=6(x-5)^5 \\ v=(x-4)^5 \\ (dv)/(dx)=5(x-4)^4 \end{gathered}
\begin{gathered} Therefore \\ (dy)/(dx)=((x-4)^5*6(x-5)^5-(x-5)^6*5(x-4)^4)/(((x-4)^5)^2) \end{gathered}
(dy)/(dx)=((x-4)^4(x-5)^5((6(x-4)-5(x-5)))/((x-4)^(10))
\begin{gathered} (dy)/(dx)=(\left(x-4\right)^4\left(x-5\right)^5\left(x+1\right))/(\left(x-4\right)^(10)) \\ (dy)/(dx)=(\left(x-4\right)^4\left(x-5\right)^5\left(x+1\right))/(\left(x-4\right)^4\left(x-4\right)^6) \\ (dy)/(dx)=(\left(x-5\right)^5\left(x+1\right))/(\left(x-4\right)^6) \end{gathered}

Equate the derivative to zero


\begin{gathered} (\left(x-5\right)^5\left(x+1\right))/(\left(x-4\right)^6)=0 \\ \left(x-5\right)^5\left(x+1\right)=0 \\ (x-5)^5=0,or,x+1=0 \\ x-5=0,or,x+1=0 \\ x=5,or,x=-1 \end{gathered}
\begin{gathered} when,x=5 \\ y=((5-5)^6)/((5-4)^5)=(0^6)/(1^5)=(0)/(1)=0 \end{gathered}
\begin{gathered} When,x=-1 \\ y=((-1-5)^6)/((-1-4)^5)=((-6)^6)/((-5)^5)=(46656)/(-3125)=-14.92992 \end{gathered}

Hence

(5,0) and (-1,-14.92992)

x=(-1, 5)

User Catsky
by
2.9k points