30.1k views
2 votes
Sum of series to n terms 0.4+0.44+0.444+....

1 Answer

3 votes

0.4+0.44+0.444+\cdots=\frac4{10}+(44)/(100)+(444)/(1000)+\cdots=\displaystyle\sum_(k=1)^\infty(\frac49(10^k-1))/(10^k)=\frac49\sum_(k=1)^\infty\left(1-\frac1{10^k}\right)

The
nth partial sum is given by


S_n=\displaystyle\frac49\sum_(k=1)^n\left(1-\frac1{10^k}\right)

S_n\displaystyle=\frac49\bigg(\left(1-\frac1{10}\right)+\left(1-\frac1{100}\right)+\cdots+\left(1-\frac1{10^(n-1)}\right)+\left(1-\frac1{10^n}\right)\bigg)

S_n=\frac49\left(n-(10^n-1)/(9*10^n)\right)=\frac4{81}(9n-1+10^(-n))

from which it follows that the infinite sum does not converge.
User Hiral
by
6.4k points