104k views
2 votes
A is a 4x4 matrix and A^2 + 4A - 5I = 0. If det(A+2I)>0, enter det(A+2I)

User Atlanto
by
7.0k points

1 Answer

2 votes

\mathbf A^2+4\mathbf A-5\mathbf I=0

\implies\mathbf A^2+4\mathbf A+4\mathbf I=(\mathbf A+2\mathbf I)^2=9\mathbf I

\implies\det\bigg((\mathbf A+2\mathbf I)^2\bigg)=\det(9\mathbf I)

\implies\det(\mathbf A+2\mathbf I)^2=9^4\det\mathbf I

\implies\det(\mathbf A+2\mathbf I)=\pm√(9^4)

\implies\det(\mathbf A+2\mathbf I)=9^2=81

where we take the positive root because we're told that the determinant is positive.
User Brenjt
by
5.8k points