399,169 views
27 votes
27 votes
If h (x) = 5x + 8 and h(x) = -12 what is x?

User Liolik
by
2.2k points

2 Answers

13 votes
13 votes

You have the following expression for the function h(x):


h(x)=5x+8

Moreover, you have:


h(x)=-12

To determine the value of x that makes h(x) = -12, equal the previous result to the expression for h(x) and solve for x, just as follow:

5x + 8 = -12 subtract 8 both sides

5x = -12 - 8 simplify right side

5x = -20 divide by 5 both sides

x = -20/5

x = -4

Hence, x = -4 makes that h(x) = -12

User Neicy
by
2.3k points
15 votes
15 votes

Answer:


x=-4

Explanation:

Givens

We are given two different functions:


h(x)=5x+8\\\\h(x)=-12

Since both functions are defined as h(x), we can set the values equal to each other and solve for our unknown, x.

Solve

To begin, set the two expressions equal to each other:


5x+8=-12

Isolate the unknown by rearranging the equation to have the unknown (and its coefficient) by itself and set equivalent to the constants:


5x+8-8=-12-8\\\\5x=-20

Divide both sides of the equation by 5 to isolate the unknown:


\displaystyle (5x)/(5)=-(20)/(5)\\\\\boxed{x=-4}

Therefore, x = -4.

User Arctelix
by
2.8k points