209k views
5 votes
How do I solve this?

How do I solve this?-example-1
User Kdog
by
7.3k points

1 Answer

4 votes
Case 1:
(3)/(7) < (4 - x)/(2x + 5)


(3)/(7) < ((4 - x)(2x + 5))/((2x + 5)^(2))

(3(2x + 5)^(2))/(7) < (4 - x)(2x + 5)

3(2x + 5)^(2) < 7(4 - x)(2x + 5)

3(4x^(2) + 20x + 25) < 7(3x + 20 - 2x^(2))

12x^(2) + 60x + 75 < 21x + 140 - 14x^(2)

26x^(2) + 39x - 65 < 0

13(2x^(2) + 3x - 5) < 0

2x^(2) + 3x - 5 < 0

(2x + 5)(x - 1) < 0

Thus, we know that
-(5)/(2) < x < 1 for case 1.

Case 2:
(4 - x)/(2x + 5) < (4)/(5)

(4 - x)(2x + 5) < (4(2x + 5)^(2))/(5)

5(4 - x)(2x + 5) < 4(4x^(2) + 20x + 25)

5(3x + 20 - 2x^(2)) < 4(4x^(2) + 20x + 25)

15x + 100 - 10x^(2) < 16x^(2) + 80x + 100

0 < 26x^(2) + 65x

0 < 13x(2x + 5)

Case 2:
x > 0, x < -(5)/(2)

Thus, the only scenario where both cases satisfy are:
0 < x < 1
User James Ward
by
7.9k points