209k views
5 votes
How do I solve this?

How do I solve this?-example-1
User Kdog
by
7.7k points

1 Answer

4 votes
Case 1:
(3)/(7) < (4 - x)/(2x + 5)


(3)/(7) < ((4 - x)(2x + 5))/((2x + 5)^(2))

(3(2x + 5)^(2))/(7) < (4 - x)(2x + 5)

3(2x + 5)^(2) < 7(4 - x)(2x + 5)

3(4x^(2) + 20x + 25) < 7(3x + 20 - 2x^(2))

12x^(2) + 60x + 75 < 21x + 140 - 14x^(2)

26x^(2) + 39x - 65 < 0

13(2x^(2) + 3x - 5) < 0

2x^(2) + 3x - 5 < 0

(2x + 5)(x - 1) < 0

Thus, we know that
-(5)/(2) < x < 1 for case 1.

Case 2:
(4 - x)/(2x + 5) < (4)/(5)

(4 - x)(2x + 5) < (4(2x + 5)^(2))/(5)

5(4 - x)(2x + 5) < 4(4x^(2) + 20x + 25)

5(3x + 20 - 2x^(2)) < 4(4x^(2) + 20x + 25)

15x + 100 - 10x^(2) < 16x^(2) + 80x + 100

0 < 26x^(2) + 65x

0 < 13x(2x + 5)

Case 2:
x > 0, x < -(5)/(2)

Thus, the only scenario where both cases satisfy are:
0 < x < 1
User James Ward
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories