124k views
4 votes
Find the interval of convergence of the series (6^n (x+6)^n)/ sqrt(n)

User Aulia
by
6.0k points

1 Answer

2 votes

\displaystyle\sum_(n\ge1)(6^n(x+6)^n)/(\sqrt n)

By the ratio test, the series converges when


\displaystyle\lim_(n\to\infty)\left|((6^(n+1)(x+6)^(n+1))/(√(n+1)))/((6^n(x+6)^n)/(\sqrt n))\right|<1

The limit is


\displaystyle6|x+6|\lim_(n\to\infty)(\sqrt n)/(√(n+1))=6|x+6|

which means the series converges when
6|x+6|<1, or
-\frac{37}6<x<-\frac{35}6.
User Jcsanyi
by
5.3k points