2.1k views
0 votes
Find an approximation of the area of the region R under the graph of the function f on the interval [0, 2]. Use n = 5 subintervals. Choose the representative points to be the midpoints of the subintervals.

f (x) = x^2 + 5

User Triazotan
by
7.7k points

1 Answer

1 vote
Interval:
[0,2]

Partition:
\left[0,\frac25\right]\cup\left[\frac25,\frac45\right]\cup\left[\frac45,\frac65\right]\cup\left[\frac65,\frac85\right]\cup\left[\frac85,2\right]

Midpoints:
\left\{\frac15,\frac35,1,\frac75,\frac95\right\}

Value of
f(x) at the midpoints:
\left\{(126)/(25),(134)/(25),6,(174)/(25),(206)/(25)\right\}

So the definite integral is approximated by the sum


\displaystyle\int_0^2(x^2+5)\,\mathrm dx=\frac25\left((126)/(25)+(134)/(25)+6+(174)/(25)+(206)/(25)\right)=(316)/(25)=12.64

Compare to the actual value of the integral,


\displaystyle\int_0^2(x^2+5)\,\mathrm dx=\frac{38}3\approx12.67
User Marko Cakic
by
7.9k points