103k views
1 vote

\int\limits^3_tx+2 \, dx

where t = - 3

1 Answer

7 votes

\displaystyle\int_(-3)^3|x+2|\,\mathrm dx

Recall the definition of absolute value:


|x|=\begin{cases}x&amp;\text{for }x\ge0\\-x&amp;\text{for }x<0\end{cases}

So we can split up the integration interval at
x=-2 and apply this definition to rewrite the integral as


\displaystyle\int_(-3)^(-2)(-(x+2))\,\mathrm dx+\int_(-2)^3(x+2)\,\mathrm dx

=\displaystyle-\int_(-3)^(-2)(x+2)\,\mathrm dx+\int_(-2)^3(x+2)\,\mathrm dx

=-\left(\frac12x^2+2x\right)\bigg|_(x=-3)^(x=-2)+\left(\frac12x^2+2x\right)\bigg|_(x=-2)^(x=3)

=\frac12+\frac{25}2=13
User Canufeel
by
7.8k points

Related questions

1 answer
4 votes
157k views