139k views
2 votes
Intigretion of 1/ sqrt x + qube x

User Daspek
by
8.5k points

1 Answer

4 votes

\displaystyle\int(\mathrm dx)/(x^(1/2)+x^(1/3))

Let
u=x^(1/6), so that
u^6=x and
6u^5\,\mathrm du=\mathrm dx. Then
x^(1/2)=x^(3/6)=u^3 and
x^(1/3)=x^(2/6)=u^2.


\displaystyle\int(6u^5)/(u^3+u^2)\,\mathrm du=6\int(u^3)/(u+1)\,\mathrm du

Then with
t=u+1, so that
u=t-1 and
\mathrm du=\mathrm dt, we have


\displaystyle6\int\frac{(t-1)^3}t\,\mathrm dt=6\int\left(t^2-3t+3-\frac1t\right)\,\mathrm dt

which should be easy to finish.
User El Cheicon
by
9.0k points