60.2k views
3 votes
Use a definite integral to find an expression that represents the area of the region between the given curve and the x-axis on the interval [0,b].

y=6x^2

User Bruce Dean
by
7.6k points

1 Answer

1 vote

Answer:


\displaystyle A = 2b^3

General Formulas and Concepts:

Calculus

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Area of a Region Formula:
\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Explanation:

Step 1: Define

Identify

y = 6x²

[0, b]

Step 2: Find Area

  1. Substitute in variables [Area of a Region Formula]:
    \displaystyle A = \int\limits^b_0 {6x^2} \, dx
  2. [Integral] Rewrite [integration Property - Multiplied Constant]:
    \displaystyle A = 6\int\limits^b_0 {x^2} \, dx
  3. [Integral] integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle A = 6 \bigg( (x^3)/(3) \bigg) \bigg| \limits^b_0
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle A = 6 \bigg( (b^3)/(3) \bigg)
  5. Simplify:
    \displaystyle A = 2b^3

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User TonyWilk
by
7.8k points

No related questions found