225k views
0 votes
Please me with this!

Please me with this!-example-1
User Stanwise
by
8.9k points

1 Answer

2 votes

sin^(-1)(x) + cos^(-1)(-(1)/(2)) = \pi

sin[(sin^(-1)(x) + cos^(-1)(-(1)/(2))] = 0

sin(sin^(-1)(x)) \cdot cos(cos^(-1)(-(1)/(2))) + cos(sin^(-1)(x)) \cdot sin(cos^(-1)(-(1)/(2))) = 0


-(x)/(2) + \sqrt{1 - x^(2)} \cdot \sqrt{1 - (-(1)/(2))^(2)} = 0

\sqrt{1 - x^(2)} \cdot \sqrt{1 - ((1)/(4))} = (x)/(2)

\sqrt{1 - x^(2)} \cdot \sqrt{(3)/(4)} = (x)/(2)


\frac{\sqrt{3(1 - x^(2))}}{2} = (x)/(2)

\sqrt{3(1 - x^(2))} = x

3(1 - x^(2)) = x^(2)

3 - 3x^(2) = x^(2)

4x^(2) = 3


x^(2) = (3)/(4)

x = \pm (√(3))/(2)

Substitute both x-values in, and only
x = (√(3))/(2) works.

Thus,
x = (√(3))/(2) is your solution.
User Ji ASH
by
8.3k points

No related questions found